20 research outputs found

    Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts

    No full text
    A comprehensive characterization of the lipidome from limited starting material remains very challenging. Here we report a high-sensitivity lipidomics workflow based on nanoflow liquid chromatography and trapped ion mobility spectrometry (TIMS). Taking advantage of parallel accumulation-serial fragmentation (PASEF), we fragment on average 15 precursors in each of 100 ms TIMS scans, while maintaining the full mobility resolution of co-eluting isomers. The acquisition speed of over 100 Hz allows us to obtain MS/MS spectra of the vast majority of isotope patterns. Analyzing 1 mu L of human plasma, PASEF increases the number of identified lipids more than three times over standard TIMS-MS/MS, achieving attomole sensitivity. Building on high intra- and inter-laboratory precision and accuracy of TIMS collisional cross sections (CCS), we compile 1856 lipid CCS values from plasma, liver and cancer cells. Our study establishes PASEF in lipid analysis and paves the way for sensitive, ion mobility-enhanced lipidomics in four dimensions

    Protein mixtures using two-dimensional chromatography and ion trap MS

    No full text
    Studying proteomes is of central interest in life sciences, because expression and degradation of proteins are highly dynamic processes, which admit cells to adapt to changing conditions like drugs, temperature changes etc. In this respect, e.g. the discovery of proteins with unknown functionality or the investigation o fmetabolic pathways are main topics
    corecore